skip to main content


Search for: All records

Creators/Authors contains: "Bishop, Kyle J. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Active colloids are a class of microparticles that ‘swim’ through fluids by breaking the symmetry of the force distribution on their surfaces. Our ability to direct these particles along complex trajectories in three-dimensional (3D) space requires strategies to encode the desired forces and torques at the single particle level. Here, we show that spherical colloids with metal patches of low symmetry self-propel along non-linear 3D trajectories when powered remotely by an alternating current (AC) electric field. In particular, particles with triangular patches of approximate mirror symmetry trace helical paths along the axis of the field. We demonstrate that the speed and shape of the particle’s trajectory can be tuned by the applied field strength and the patch geometry. We show that helical motion can enhance particle transport through porous materials with implications for the design of microrobots that can navigate complex environments.

     
    more » « less
  2. Abstract

    Traveling waves of mechanical actuation provide a versatile strategy for locomotion and transport in both natural and engineered systems across many scales. These rhythmic motor patterns are often orchestrated by systems of coupled oscillators such as beating cilia or firing neurons. Here, we show that similar motions can be realized within linear arrays of conductive particles that oscillate between biased electrodes through cycles of contact charging and electrostatic actuation. The repulsive interactions among the particles along with spatial gradients in their natural frequencies lead to phase-locked states characterized by gradients in the oscillation phase. The frequency and wavelength of these traveling waves can be specified independently by varying the applied voltage and the electrode separation. We demonstrate how traveling wave synchronization can enable the directed transport of material cargo. Our results suggest that simple energy inputs can coordinate complex motions with opportunities for soft robotics and colloidal machines.

     
    more » « less